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Abstract—This paper is concerned with the hysteretic behavior of a prismatic bar subjected to repeated
axial loading. Elastic-perfectly plastic behavior is assumed in the analysis under the combined action of
axial force and bending moment. The fully plastic states in pure bending and in pure tension and
compression are bilinearly interpolated to serve as the yield condition; linearly interacted regimes are
combined with interactionless regimes of pure bending to form the yield hexagon, which is a modification of
a previously assumed yield quadrangle. Basic equations are derived through the analysis, expressed in a
simple analytic closed form, and are able to determine the load-deformation relationship of the bar for any
specified history of axial loading.

As a result of the analysis it follows that due to the load cycle of tension and compression an initially
straight and plastically bent bar undergoes a plastic extension upon the recovery of the straight
configuration. This is the balanced axial deformation at a yield hinge between extension and contraction,
taking place during the cycle of hinge rotation. Another characteristic feature found is that cyclic alternate
displacement loading with large amplitude leads to a steady state after some repeated deterioration of
processes. Comparison is made of the load-axial displacement relation between the analytical and
experimental results to show reasonable agreement, with discussions extended to the appropriateness of the
form of the yield condition.

1. INTRODUCTION

Axially loaded members play an important role in such structures as trusses and braced frames.
Clarification of the performance of these structures under repeated loading requires the
knowledge of the hysteretic load-deformation characteristics of axially loaded members.
Recently in Italy and Japan much effort has been directed to the formulation of the
elastic—plastic axial load-displacement relation of steel braces, in relation to the response of tall
braced frames to earthquake excitation; the static relationship is useful for the determination of
dynamic behavior, since braces have relatively small mass. It is worthy of note that plastic
action in axially loaded members ordinarily takes precedence over flexurally loaded members
because of the predominance in stiffness of the former over the latter. Some results of
numerical analyses are reported in the form of charts[1-7], and a successive approach is
proposed on the basis of simple plastic theory established for beams and unbraced frames, which
does not take account of plastic axial deformation(8, 9.

The author has formulated a general elastic—plastic solution for the hysteretic behavior of a
prismatic bar subject to repeatedly applied loads in the axial direction[10]. The assumption of
perfect plasticity together with the one-dimensional idealization of the bar has led to basic
equations which have been shown to be adequate for the behavior to be determined for any
history of axial loading in the range of small deformation. This theory describes how a bar,
after deforming plastically due to instability during compression, recovers in a subsequent
tension, and describes how the bar as a structural member gets loosened by plastic elongation,
reducing the overall stiffness of the structure. While the usefulness of the theory as a first order
approximation has been confirmed experimentally[11,12], it contains a significant defect. The
analysis has been based on the assumption that the fully plastic states in pure bending and in
purely axial loading can be linearly interpolated to serve as the yield condition for the
interaction of bending moment and axial force. The piecewise linearity in the yield condition is
the idealization for an I-section with thin web and flanges, and is rather a crude approximation
of commercially available cross sections. As a consequence, the solution has had a merit in
simplicity but a demerit in the prediction that a plastically deformed bar completely restores its
full strength and initial straightness upon the reversion of the axial displacement, as against the
actual observation that a plastically deformed bar hardly becomes straight again through mere

637



638 T. NoNAKA

extension. A nonlinear yield condition replacing the piecewise-linear one improves the prediction
on this point to a certain extent, and an attempt to use a parabolic yield condition has resulted in
better agreement with the experimental behavior of a rectangular prism[13]. Then, however, the
basic equations have not been able to be expressed in a finite number of analytic functions. The
objective of the paper presented herein is to obviate the two shortcomings found in the use of
the piecewise-linear and parabolic yield conditions, and to develop an analysis which still leads to a
closed-form analytic solution. This is accomplished by modifying the form of the yield condition.
The analytical results are then compared with the experimental, and discussions extend to the
pertinence of the modification.

2. ASSUMPTIONS

An initially straight bar of uniform material and cross section is subjected to a repeatedly
applied load, which is a pair of equal and opposite forces acting centroidally at the ends of the
bar with slowly varying intensity. The effective length L is taken so that the bar can be
regarded as being simply supported at its ends. The main interest lies in the hysteretic
relationship between the load N, positive for tension, and the relative displacement A, positive
for separation, of the bar ends in the direction of loading. In this paper there is the restriction
that deformation may be finite but small enough so that change in the length of the bar is
negligible when compared with the original and so that the square of the slope of the deflection
curve can be neglected in comparison with unity. It is assumed that the cross section has axes
of symmetry and that the bar deflects only in the plane of symmetry without twist, having
cross-sectional area A and moment of inertia I. The bar is idealized as a one-dimensional
continuum, having the property of linear elasticity with Young’s modulus E followed by perfect
plasticity under combined action of the axial force N and bending moment M.

The yield condition for the M-N interaction is approximated by bilinearly interpolating the
fully plastic state [M|= M, in pure bending and the fully plastic state |N|= N, in pure tension
and compression. This is represented in the dimensionless stress-resultant plane (M/M,, N/N,)
to form the yield hexagon, as shown by solid lines in Fig. 1. Yielding is stipulated by linking
interactionless regimes of pure bending with linearly interacted regimes, having a corner at
(1, 1 - ¢) in the first quadrant, and having double symmetry with respect to the co-ordinate axes.
This form of the yield condition is selected as the simplest with a single parameter ¢ among
bilinear representations in one quadrant, while still furnishing a reasonable prediction for the
overall hysteretic behavior of an axially loaded bar; ¢ is to be chosen properly between zero
and unity, according to the shape of the cross section and the dominant range of the load
intensity. The choice ¢ =1 would be identical with the previously assumed piecewise-linear
yield condition which is represented by the square as drawn in dotted-and-dashed lines in Fig.
1. If it is specified that the same area of elastic domain be enclosed by the hexagon of the
modified piecewise-linear yield condition and by the pair of parabolas drawn in dotted lines
which correspond to the fully plastic condition for a rectangular cross section, then it follows
that ¢ =2/3. It is worth noting that the modified piecewise linearity is equivalent to assuming
the cross section to consist of three concentrated areas, two as flanges and the other as the
center web.

It is also assumed that a compressed straight bar buckles when the compression reaches
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Fig. 1. Yield curves.
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either the Euler load Ng = w>EI/L? or the crush load N,. Investigation is focused on bars of
moderate slenderness such that Nz and N, are of the same order of magnitude. The effects of
shear are completely neglected.

3. FORMULATION
While taking note of the fact that the history of the axial displacement has to be specified in
order for the behavior of the bar to be determined, it is convenient to express the displacement
in terms of the load. Some of the basic relations established previously remain valid[10]. The
dimensionless displacement 8, the ratio of the relative axial displacement to the yield point
displacement, is composed of four components, viz.,

8=(EAIN,L)A =8 +6°+ 8" + ¥,

where 8° is due to elastic axial deformation, 8* =0 to change in geometry associated with
transverse deflection, 8° to plastic axial deformation at a yield hinge, and & =0 to plastic
elongation in a straight configuration. Among these it is clear that §° is equal to the
dimensionless load n= N/N,, and that 8 can increase when n equals unity and remains
constant otherwise. The component §* is caused by the difference in length between the arc and
chord of the deflection curve, two halves of which are symmetric and determined from the
equilibrium and elasticity of the bar. Each half is expressible in terms of a hyperbolic function;
see Fig. 2. At the middle the deflection V =(M,/Nov =0 is related to the slope angle
0 =(Q2M,/N,L)8 =0 by

8 = (v/tanh v)o. )

Integration of the square of the slope along the bar axis provides the component

5% = —any ( 0 )2 [sinh (21/)+ 1]’ @)

7 cosh v 2v

where a = (A/I)(Mo/No)’ is a cross-sectional constant, nz = Ng/N, is a slenderness constant,
and v = (NL*/4EI)"”? = (n/2)(n/ng)"* is a dimensionless axial force. When the load is negative, v
is imaginary and in order to express the results in terms of real functions, it suffices to replace »
by its modulus and to replace the hyperbolic functions by the corresponding trigonometric
functions. The above relations are unchanged by the modification of the yield condition.

Plastic action can take place with a yield hinge at the middle of the bar when the deflection
attains such a value that the yield condition is satisfied. In order to relate this deflection to the load,
it is first noted from the equilibrium relation

m+n=90 3)

that the bending moment M = mM, at the middle has the opposite sign to the load when the
positive moment is defined to be compatible with an increase in the hinge rotation 20 as shown
in Fig. 2. It follows that the state of stress at the middle cross section has a stress point
somewhere in the second or fourth quadrant in the stress plane of Fig. 1, and for the relevant
regimes the yield condition reads

Im|=1 for |n|=1-¢, (4a)
[n—cm|=1 for 1-c=|n|=1. (4b)
&
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Fig. 2. Notation.
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Combination of eqns (3) and (4) gives

_(U|n for |n|=1-¢
v—{(llc)(lllnl—l) for 1-c=Z(n|=1. (5a,b)
As long as eqn (5) is kept satisfied, there can be a change in the hinge rotation at the middle. It
is accompanied by a change in the plastic axial deformation, their relation being determined by
the normality of the flow rule associated with eqn (4). It follows for the increments that
0 for |n|<l-c¢
P — .
d3 {—(2/w)z(anE/C) 6 for 1-c<n<l. (6a.)

The hinge rotation to be substituted in eqns (2) and (6) is related to the load by combining eqns (1)
and (5) for a plastic process.
When the deflection is smaller than is given by eqn (5), then the bar behaves in an elastic
manner and
dé* =de = 0. (7)

If v is to be determined for an elastic process, eqn (1) may be used with # kept constant and
specified by the preceding plastic action. It is worthy of note that because of the incremental
relation of eqn (6) the hereditary nature of plasticity is comprised not only in 6° and ¢ but also
in 87, appearing as an integral constant, which has not been the case with the piecewise-linear
yield condition assumed previously[10].

4. ILLUSTRATION

Figure 3 serves to illustrate the behavioral characteristics of a bar under a varying axial
load. In (a)~(d) of Fig. 3, 8, v, # and m are taken, respectively, for the abscissae as against the
common ordinate of n. The variation in the states of deformation and stress is indicated by
orderly numbering in circles. It is assumed in this illustration that 1— ¢ < ng <1. After being
subjected to plastic yielding in tension, the bar is compressed until it buckles at n = —ng as in
®—>@®. A yield hinge is formed at the middle of the bar in ®-»>®, with the stress point moving
first along an interacted regime and transferring at © to an interactionless regime of the yield
hexagon as shown in Fig. 3(d). During the process ®—>Q the yielding causes plastic flow of
contraction in the axial direction besides a relative rotation across the yield hinge, whereas no
change takes place in the axial plastic deformation in ©®—>®. The process ®—->0 is
characterized by elastic recovery, and is followed by hinge action with a tensile force in ® ->®,
until the bar restores straightness, v = 8 =0, with n =1 at ®. The plastic axial deformation
developed at the yield hinge in ®—>(® is an extension, and the balanced hinge extension
remaining at ® is given through equs (6) and (7) from

85" = —(2/m)*(ang/c)[(8s — 65) + (6s— 6.)], (8)
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Fig. 3. Behavioral diagrams of an axially loaded bar.
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where subscripts refer to the states defined above. Clearly 8y = 8, = 0. With ng = —ns= 1 — ¢, and
with eqn (5), it is found that vs = vs = 1/(1 - ¢), and hence eqns (1) and (8) are combined to give

oo = e G22) {maen [F () T van S P00

The fact 8° > 0 follows from the inequality 8: > 65, which is visualized by noting that there is a
change in the hinge rotation without a change in the plastic axial deformation between the states
® and ®, the middle deflection returning to the identical value, and by noting that the actual
deflection curve is hyperbolic-sine for tension and is sine for compression in each half with the
co-ordinate origin at the end, as shown in Fig. 4. It is thus seen that the yield hinge undergoes
extension through the rotation cycle caused by the load cycling from and to n = 1. Therefore, the
n-8 curve of Fig. 3(a) does not close in ® — ®; since the changes in 8°, 6° and §' between @ and
® all vanish, the difference, 8, — 8., equals 8, of eqn (9). For a rectangular cross section, o = 3/4,
and specification ¢ = 2/3, ns = 3/5, for example, leads to 8, — 8, = 0.76. It is reminded that in the
previous case of the piecewise-linear yield condition the accumulation phenomenon in hinge
extension has not occurred, but the n-8 curve has closed at the attainment of n = 1, because of
the complete proportionality of the hinge rotation and plastic axial deformation[10].

Let us examine a case of cyclic displacement loading. It is again assumed that 1 —¢ <ng <1.
The loading is started with contraction and is repeated alternatively with the same amplitude 84 in
the separation and approach. If 8. is sufficiently large, the hysteretic n-§ relation traces such
loops as shown in Fig. 5. The behavior of the bar deteriorates with the number of repetition of
loading cycles until the load magnitude is reduced into the range |n| = 1 - ¢. Henceforth the loop
becomes stable as drawn in thick lines, and the behavior reaches a steady state. The previous
piecewise linearity in the yield condition has indicated for a steady state to be attained before the
end of the first cycle[10], and the use of the parabolic yield condition never leads to a steady
state, predicting everlasting deterioration[13].
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Fig. 4. Dimensionless deflection curves.

Fig. 5. Cyclic alternate displacement loading.

5. COMPARISON AND CONCLUSIONS

Comparison is made of the n-48 relation between the theoretical and experimental results in
Fig. 6. The solid lines are drawn for the modified piecewise-linear yield condition with ¢ = 2/3,
dotted lines for the parabolic yield condition[13], dotted-and-dashed lines for the piecewise-
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Fig. 6. Comparison between theories and experiment.

linear yield condition[10], and dashed lines for experiment[14, 15]. The tests were carried out
with mild steel specimens of square cross section (15 X 15 cm). The particular specimen cited had
the slenderness of nz = 1.13. The loading program was controlled by the axial displacement, with
regard to which discretion is exercised in comparing with theoretical prediction. Starting with
contraction, the loading was not successfully regulated in the early post-buckling region because
of the rapid variation in the load and deformation. This is seen to cause a marked discrepancy
with the theories in this region. For another discrepancy observed near the second buckling
region the theories may be responsible; all the theories introduced herein predict the complete
recovery of straightness upon the attainment of n = 1, material hardening in the plastic range
being ignored, whereas the actual bar hardly becomes straight through mere extension after being
plastically deformed into a crooked configuration. Except for these regions and for other minor
discrepancies occurring due to the theoretical negligence of partial yielding in cross sections,
general agreement is seen between the theoretical and experimental results. Difference in the
theoretical prediction due to the various forms of the yield condition is rather remarkable. It is
seen that the parabolic or modified piecewise-linear yield condition with ¢ = 2/3 better fits the
experimental behavior of the mild steel square prism than the piecewise-linear yield condition,
which corresponds to a state of stress lying somewhere between the initial yield and full plasticity
for many practical cross sections. The discrepancy between the modified piecewise-linear and
parabolic yield conditions is not significant in this figure, but an advantage in the use of the
former lies in the simplicity of analysis. Another advantage is concerned with the experimental
observation that steel bars tend visibly to arrive at a steady state, which can be reached in the
prediction by the former but not by the latter, within the first few cycles when subjected to cyclic
displacement loading, unless local instabilities or twisting occurs[15]. Within the framework of
this series of theoretical investigation, therefore, it seems advisable to use the modified
piecewise-linear yield condition with a proper choice of the parameter ¢ depending on the
cross-sectional shape and the dominant loading range.
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